Udemy - Mastering LLM Alignment and Preference Optimization Llama3 LLM
- CategoryOther
- TypeTutorials
- LanguageEnglish
- Total size263.1 MB
- Uploaded Byfreecoursewb
- Downloads30
- Last checkedMay. 25th '24
- Date uploadedMay. 24th '24
- Seeders 15
- Leechers5
Infohash : CB054423C971F4153577B76EEFA572A705BC46B0
Mastering LLM Alignment & Preference Optimization Llama3 LLM
https://DevCourseWeb.com
Published 5/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 39m | Size: 265 MB
Mastering Direct Preference Optimization: Practical Techniques with LLaMA3, Hugging Face, and Advanced Language Models
What you'll learn
Learn how to use direct preference optimization training.
Use HuggingFace TRL Library with Llama3 8B for direct preference training
Learn how to train on your own data with direct preference optimization
Learn the science behind direct preference optimization and optimizing large language models.
Requirements
A premium Google Colab account, basic python knowledge.
Files:
[ DevCourseWeb.com ] Udemy - Mastering LLM Alignment and Preference Optimization Llama3 LLM- Get Bonus Downloads Here.url (0.2 KB) ~Get Your Files Here !
- 1. Introduction.mp4 (59.8 MB)
- 2. Dataset Creation.mp4 (72.5 MB)
- 3. Model Creation and Initial Evaluation.mp4 (33.9 MB)
- 4. Training with Direct Preference Optimization.mp4 (30.8 MB)
- 5. Training with Direct Preference Optimization - Part 2.mp4 (42.0 MB)
- 6. Final Model Evaluation.mp4 (24.1 MB)
- 6.1 trainer.py (3.7 KB)
- Bonus Resources.txt (0.4 KB)
Code:
- udp://tracker.torrent.eu.org:451/announce
- udp://tracker.tiny-vps.com:6969/announce
- http://tracker.foreverpirates.co:80/announce
- udp://tracker.cyberia.is:6969/announce
- udp://exodus.desync.com:6969/announce
- udp://explodie.org:6969/announce
- udp://tracker.opentrackr.org:1337/announce
- udp://9.rarbg.to:2780/announce
- udp://tracker.internetwarriors.net:1337/announce
- udp://ipv4.tracker.harry.lu:80/announce
- udp://open.stealth.si:80/announce
- udp://9.rarbg.to:2900/announce
- udp://9.rarbg.me:2720/announce
- udp://opentor.org:2710/announce