Udemy - Building a Realtime Streaming System for a Smart City

  • CategoryOther
  • TypeTutorials
  • LanguageEnglish
  • Total size2 GB
  • Uploaded Byfreecoursewb
  • Downloads34
  • Last checkedApr. 27th '24
  • Date uploadedApr. 26th '24
  • Seeders 14
  • Leechers10

Infohash : 2F274C947D9B8BD4023A36675FDD8F4C064D8B75

Building a Realtime Streaming System for a Smart City

https://DevCourseWeb.com

Published 4/2024
Created by Ganiyu Yusuf
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 22 Lectures ( 2h 27m ) | Size: 2 GB

Master Real-Time Data Engineering: Build a Smart City End to End Streaming Pipeline with Kafka, Spark, AWS & Docker

What you'll learn:
Participants will gain a thorough understanding of data engineering concepts, including data ingestion, processing, storage, and visualization.
Through practical nstrations and coding exercises, participants will gain hands-on experience with a variety of industry-standard tools and technologies
By following along with the project setup, coding, and deployment process, participants will acquire the skills needed to build and deploy real-world solutions
Participants will encounter challenges and learn how to troubleshoot common issues that arise during the development and deployment of a data streaming pipeline
Participants will be well-equipped to pursue career opportunities in data engineering, IoT, cloud computing, and related fields.

Requirements:
Basic Python programming experience

Files:

[ DevCourseWeb.com ] Udemy - Building a Realtime Streaming System for a Smart City
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1. Introduction
    • 1. Project Background and Use case.mp4 (25.5 MB)
    • 2. Setting up Docker on your Computer.mp4 (32.1 MB)
    2. System Architecture
    • 1. System architecture.mp4 (83.1 MB)
    • 2. Creating the Project.mp4 (39.9 MB)
    • 3. Setting up zookeeper and apache Kafka on docker.mp4 (114.5 MB)
    • 4. Setting up Apache Spark master worker architecture.mp4 (97.3 MB)
    3. IOT Data Producer
    • 1. Writing the base code for IOT data production.mp4 (135.2 MB)
    • 2. Generating vehicle location.mp4 (144.6 MB)
    • 3. Generating GPS data.mp4 (38.3 MB)
    • 4. Generating Camera Information.mp4 (42.6 MB)
    • 5. Generating Weather data.mp4 (76.3 MB)
    • 6. Generating emergency incidence data.mp4 (55.3 MB)
    • 7. Producing IOT data to apache kafka.mp4 (158.2 MB)
    • 8. Setting up and AWS secret key and access key.mp4 (64.5 MB)
    4. Realtime Streaming Consumer
    • 1. Setting up apache spark consumer from kafka.mp4 (135.3 MB)
    • 2. Creating schema for the spark streams.mp4 (111.7 MB)
    • 3. Connecting schema to spark streams.mp4 (99.7 MB)
    • 4. Streaming data to s3 lakehouse.mp4 (247.6 MB)
    5. Data Transformation on AWS
    • 1. Creating AWS Glue crawlers for s3.mp4 (146.7 MB)
    • 2. Querying data with AWS Athena.mp4 (45.4 MB)
    • 3. Creating Redshift cluster.mp4 (65.5 MB)
    • 4. Loading and querying Redshift.mp4 (108.9 MB)
    • Bonus Resources.txt (0.4 KB)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce