Udemy - Deploy AI Smarter - LLM Scalability, ML-Ops and Cost Efficiency

  • CategoryOther
  • TypeTutorials
  • LanguageEnglish
  • Total size2.8 GB
  • Uploaded Byfreecoursewb
  • Downloads52
  • Last checkedApr. 13th '24
  • Date uploadedApr. 12th '24
  • Seeders 5
  • Leechers27

Infohash : FD13BC0C3FEF065728545D7C62A8DA2E5D4E7E69

Deploy AI Smarter: LLM Scalability, ML-Ops & Cost Efficiency

https://DevCourseWeb.com

Published 4/2024
Created by The Fuzzy Scientist
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 29 Lectures ( 4h 41m ) | Size: 2.84 GB

Deployment, Generative AI, LLMs, GPT4, ML-Ops, LoRa, AVQ, Ray, RabbitMQ, Flash Paged Attention

What you'll learn:
Learn to set-up, configure and deploy large language models with precision, ensuring smooth operation in production environments.
Gain practical skills in ML-Ops with MLflow for effective model management and deployment.
Conduct cost-benefit analyses and apply strategic planning for economical AI project management.
Implement the latest LLM optimization and scaling techniques to enhance model performance.

Requirements:
Learners should only have a basic understanding of machine learning and proficiency in Python. All the other concepts are though inside the course.

Files:

[ DevCourseWeb.com ] Udemy - Deploy AI Smarter - LLM Scalability, ML-Ops and Cost Efficiency
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1. Introduction
    • 1. Introduction & Welcome.mp4 (74.4 MB)
    2. Getting Started
    • 1. Course Structure How to get the Most out of this Course.mp4 (119.1 MB)
    • 2. Environment Setup Prepare and Use the Resource of this Course Right.mp4 (63.6 MB)
    3. Pre-Deployment Strategies
    • 1. Ensuring Model Correctness Evaluation Techniques.mp4 (48.5 MB)
    • 2. Performance Optimization Exploring Key Dimensions.mp4 (56.6 MB)
    • 3. Balancing Speed and Accuracy Best Practices.mp4 (76.4 MB)
    4. Advanced Model Management with ML-Ops
    • 1. Fundamentals of ML Model Management and ML-Ops.mp4 (59.5 MB)
    • 2. Overview of Effective ML-Ops Frameworks.mp4 (49.0 MB)
    • 3. Setting up ML-Ops Framework Introduction to MLflow (Practical).mp4 (103.3 MB)
    • 3.1 MLflow Setup Readme.html (0.2 KB)
    • 4. Getting Started with MLflow A Practical Approach (Practical).mp4 (89.0 MB)
    • 4.1 4.5_getting_started.ipynb (10.1 KB)
    • 4.2 Colab Getting Started with MLflow.html (0.1 KB)
    • 4.3 Jupyter Notebook MLflow Getting Started.html (0.2 KB)
    • 5. Training Models with MLflow A Hands-On Guide (Practical).mp4 (171.0 MB)
    • 5.1 4.6_training_loop.ipynb (11.0 KB)
    • 5.2 Colab MLflow Training Loop.html (0.1 KB)
    • 5.3 Jupyter Notebook MLflow Training Loop.html (0.2 KB)
    • 6. MLflow for Model Inference Techniques and Practices (Practical).mp4 (150.9 MB)
    • 6.1 4.7_mlflow_inference.ipynb (10.9 KB)
    • 6.2 Colab Inference with MLflow.html (0.1 KB)
    • 6.3 Jupyter Notebook MLflow Inference & Serving.html (0.2 KB)
    • 7. Advanced Techniques in MLflow Extending Functionality (Practical).mp4 (74.2 MB)
    • 7.1 4.8_mlflow_authentication.py (0.4 KB)
    • 7.2 GitHub MLflow Authentication.html (0.2 KB)
    5. Advanced Model Deployment Techniques
    • 1. Efficiency through Batching and Dynamic Batches.mp4 (105.9 MB)
    • 2. Hands-on Application of Batching Techniques (Practical).mp4 (110.3 MB)
    • 2.1 5.2_batching_and_dynamic_batching.ipynb (8.4 KB)
    • 2.2 5.2_batching_and_dynamic_batching.py (3.6 KB)
    • 2.3 Jupyter Notebook Batching & Dynamic Batching.html (0.2 KB)
    • 2.4 Python Source Batching & Dynamic Batching.html (0.2 KB)
    • 3. The Role of Sorting in Model Deployment (Practical).mp4 (119.9 MB)
    • 3.1 5.3_the_role_of_sorting_batches.ipynb (8.5 KB)
    • 3.2 5.3_the_role_of_sorting_batches.py (2.5 KB)
    • 3.3 Jupyter Notebook Batch Sorting Optimizations.html (0.2 KB)
    • 3.4 Python Source Batch Sorting Optimizations.html (0.2 KB)
    • 4. Leveraging Quantization for Model Efficiency (Practical).mp4 (142.9 MB)
    • 4.1 5.4_understanding_quantization.ipynb (8.0 KB)
    • 4.2 5.4_understanding_quantization.py (2.5 KB)
    • 4.3 Jupyter Notebook Quantization for Model Efficiency.html (0.2 KB)
    • 4.4 Python Source Quantization for Model Efficiency.html (0.2 KB)
    • 5. Inference Strategies Parallelism, Flash Attention, GPTQ & AVQ,.mp4 (139.0 MB)
    • 6. Next-Gen Scaling LoRa, Paged Attention, ZeRO.mp4 (120.3 MB)
    6. The Economics of Machine Learning Inference
    • 1. The Broader Context of AI A Wider Perspective.mp4 (74.2 MB)
    • 2. Measuring Performance Key Metrics for Large AI Projects.mp4 (64.5 MB)
    • 3. Evaluating Deployment Strategies for Cost & Efficiency.mp4 (53.7 MB)
    • 4. Real-World Benchmarks for Success Case Studies and Insights.mp4 (134.3 MB)
    7. Effective Cluster Management for Large Scale ML Deployments
    • 1. Basic Inference - First Levels of Deployment (Practical).mp4 (132.7 MB)
    • 1.1 GitHub Level 1 Deployment.html (0.2 KB)
    • 1.2 GitHub Level 2 Deployment.html (0.2 KB)
    • 1.3 level1.py (0.9 KB)
    • 1.4 level2.py (0.9 KB)
    • 1.5 utils.py (0.4 KB)
    • 2. Entering Optimisations - Advanced Levels of Deployment (Practical).mp4 (91.4 MB)
    • 2.1 GitHub Level 3 Deployment.html (0.2 KB)
    • 2.2 GitHub Level 4 Deployment.html (0.2 KB)
    • 2.3 level3.py (0.9 KB)
    • 2.4 level4.py (0.8 KB)
    • 3. Setting Up Data Access in Distributed Environments (Practical).mp4 (157.3 MB)
    • 3.1 GitHub Level 5 Deployment.html (0.2 KB)
    • 4. Distributing Data Across a Cluster with RabbitMQ (Practical).mp4 (101.1 MB)
    • 4.1 GitHub Level 5 Deployment.html (0.2 KB)
    • 4.2 produce_prompts.py (0.5 KB)
    • 4.3 rabbit.py (1.2 KB)
    • 5. Foundations of Distributed Computing with Ray (Practical).mp4 (81.0 MB)
    • 5.1 GitHub Level 5 Deployment.html (0.2 KB)
    • 6. Scaling Large Language Models on a Cluster (Practical).mp4 (149.6 MB)
    • 6.1 consume_results.py (0.2 KB)
    • 6.2 GitHub Level 5 Deployment.html (0.2 KB)
    • 6.3 ray_batch_job.py (0.9 KB)
    • Bonus Resources.txt (0.4 KB)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce