Linkedin - Python For Data Science Tips Tricks And Techniques

  • CategoryOther
  • TypeTutorials
  • LanguageEnglish
  • Total size227.7 MB
  • Uploaded ByxHOBBiTx
  • Downloads18
  • Last checkedJan. 30th '24
  • Date uploadedJan. 30th '24
  • Seeders 13
  • Leechers13

Infohash : F9DA79F4A165B47F6F5B47914B684EE5043FF1E9

Quote:

Course details

Modern work in data science requires skilled professionals versed in analysis workflows and using powerful tools. Python can play an integral role in nearly every aspect of working with data—from ingest, to querying, to extracting and visualizing. In this course, instructor Ben Sullins highlights tips and tricks you can use right away to improve your skills in Python. Learn how to work with JSON data, CSV files, and Parquet files. Explore ways to read, inspect, and aggregate data using pandas. Plus, find out how to visualize data using basic charts, small multiples, and color in Plotly, as well as how to put the finishing touches on your data visualizations.

Files:

Linkedin - Python For Data Science Tips Tricks And Techniques 1. Introduction
  • 1. Discover new tips and tricks for Python.mp4 (4.3 MB)
  • 2. What you should know.mp4 (381.8 KB)
  • 3. Using the exercise files.mp4 (3.1 MB)
  • 4. Set up on Windows.mp4 (6.4 MB)
  • 5. Set up on Mac.mp4 (4.9 MB)
2. Ingesting Data
  • 1. Working with JSON data.mp4 (21.8 MB)
  • 2. Working with CSV files.mp4 (7.6 MB)
  • 3. Working with Parquet files.mp4 (23.2 MB)
  • 4. Reading data from GitHub API.mp4 (13.7 MB)
3. Exploring Data
  • 1. Reading data with pandas.mp4 (20.9 MB)
  • 2. Inspecting DataFrames with pandas.mp4 (9.3 MB)
  • 3. Aggregating data with pandas.mp4 (12.8 MB)
  • 4. Exporting data with pandas.mp4 (11.9 MB)
4. Visualizing Data
  • 1. Basic charts in Plotly.mp4 (15.2 MB)
  • 2. Small multiples with Plotly.mp4 (14.3 MB)
  • 3. Using color in Plotly.mp4 (12.3 MB)
  • 4. Finishing your data visualizations in Plotly.mp4 (12.6 MB)
5. Conclusion
  • 1. Next steps and additional resources.mp4 (1.5 MB)
Exercise Files
  • 01_01.ipynb (11.7 KB)
  • 01_02.ipynb (9.2 KB)
  • 01_03.ipynb (2.4 MB)
  • 01_04.ipynb (7.3 KB)
  • 02_01.ipynb (3.9 KB)
  • 02_02.ipynb (18.2 KB)
  • 02_03.ipynb (1.7 KB)
  • 02_04.ipynb (7.0 KB)
  • 03_01.ipynb (8.3 MB)
  • 03_02.ipynb (2.5 MB)
  • 03_03.ipynb (14.8 MB)
  • 03_04.ipynb (398.1 KB)
  • data
    • MonthlyProductSales.csv (515.1 KB)
    • MonthlyProductSales.parquet (74.2 KB)
    • MonthlySales.csv (1.0 KB)
    • anscombes-quartet-hier.csv (0.5 KB)
    • anscombes-quartet.csv (0.6 KB)
    • diamonds.csv (2.6 MB)
    • monthlySalesbyCategoryMultiple.json (1.6 KB)
    • mpg.csv (15.7 KB)

Code:

  • udp://inferno.demonoid.is:3391/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://explodie.org:6969/announce
  • http://tracker.bt4g.com:2095/announce
  • udp://tracker.leech.ie:1337/announce
  • http://openbittorrent.com:80/announce
  • udp://bt1.archive.org:6969/announce
  • http://t.nyaatracker.com:80/announce
  • udp://tracker.openbittorrent.com:6969/announce
  • udp://p4p.arenabg.com:1337/announce
  • udp://open.stealth.si:80/announce
  • udp://tracker.moeking.me:6969/announce
  • https://tracker.loligirl.cn:443/announce
  • udp://sanincode.com:6969/announce
  • udp://www.torrent.eu.org:451/announce